
Java Scripts and Report Building Techniques
• When querying web, look for Jasper Reports vs. Java.

• See Jasper Report Studio Guide in this folder

Scripting
What you want to do How you do it

Java was the first language supported by JasperReports
and is still the most commonly-used language as well as
being the default.

The first thing to note is that each of these expressions
represents a Java Object, meaning that the result of each
expression is a non-primitive value. The difference
between an object and a primitive value makes sense only
in Java, but it is very important: a primitive value is a pure
value like the number 5 or the Boolean value true.
Operations between primitive values have as a result a
new primitive value, so the expression:
5+5
results in the primitive value 10. Objects are complex
types that can have methods, can be null, and must be
“instanced” with the keyword “new” most of the time. In
the second example above, for instance (new Boolean
(true)), we must wrap the primitive value true in an object
that represents it.

Following are some examples of Java expressions:
• “This is an expression”
• new Boolean(true)
• new Integer(3)

• (($P{MyParam}.equals("S")) ? "Yes" : "No")

Provide an output value in a report
Put this in the expression to return Vaccine Card Filed
when the issue date for an RI is not null, else No Vaccine
Card on File

=$F{Resource Record Item Issue Date} !=null ? "Vaccine Card Filed" : "No Vaccine Card on File"

Java – Print something when field is empty.
In this case if the field is empty, you print NA
Note the If then structure

= $F{Device FAA ID} == null ? "NA": $F{Device FAA ID}

Print when value is not null
You can apply this to other fields on the same line and
then choose Remove Blank in the properties so the entire
line does not print when a particular value occurs or in this
case is null

=$F{Currency Queue Item Due Period End} != null

Print when condition is true =$F{Is Expired}==true

Print if > then
= $F{Device FAA ID} == null ? "NA": $F{Device FAA ID}
= $F{Device FAA ID} == null ? $F{Assigned Date}:$F{Device FAA ID}
-brackets denote any query $F{any query term}

Print when

You can use the formatting above or below to print when either type of case is true. If you
select ‘Remove Blanks’ on the design tab, the blank rows are removed. You can do the same to
headers/labels by placing headers inside of a sub report or in the main report with this
language.

=!$F{Issue Date}. before $V{Prev Month}

(See below for how you might set up Prev Month. This was used in the expirations reports to
trigger highlighting and in the old TCE Cert Action Obs Report).

Print when query returned date is before or after an end
of month date
Enter text at right in the Print When dialogue. The query
returns the currency queue item due period end. This will
be a 1st of the month value (expires at 00:00 on the first
day of the month)

Use the . before or . after command along with the date
function desired. In this case, the java string finds the 1st
day of the next month. The Add Months prompt allows
you to add as many months as you’d like to this date.
Right now it’s zero. The add Days allows you to add or
subtract days. Thus the first day of any month – 1 day is
the last day of the preceding month. Remember quals
expire at 00:00 on the first, but in reports we often look at
the last day of the month as the ‘due date’.
In this example, today is 27 March 2021. The scripting
finds a new date of 01 April 21 and prints when the
currency Queue date is before this date.
This is useful for printing items that are coming due – you
could add 2 months as an example. See the currency
expiration report for use.

=$F{Currency Queue Item Due Period End}.
before(DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), +1),
Calendar.MONTH), -0))

Negating. Adding an exclamation point negates what
comes next, so this is really finding when Is Expired is NOT
TRUE

=!$F{Is Expired}==true
See not null example above. Location of ! may vary depending on whether a calculation is
required or not.

Get date
Use expression at right

=(new java.util.Date ((new java.util.Date ()) .getYear(), (new java.util.Date ()) .getMonth (), (new
java.util.Date()) .getDate ()))

Get Date mint:now

Get Last day of Last Month
 Today is 27 March this returns 28 FEB

=DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), -1),
Calendar.MONTH), -1)

Get Last day of Any Month from now
 Today is 27 March this returns 31 May
The first part gets the first day of the next month. This
would be 01 April. The +2 adds 2 months and gives 01
June. Then you Subtract 1 day to get the last day of May

=DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), +2),
Calendar.MONTH), -1)

Get Last day of Last Month
 Today is 27 March this returns 28 FEB
The -1 removes days, so +1 will get to the first day of this
month (last day of last month + 1 day)

=DateUtils.addDays(DateUtils.truncate(mint:now, Calendar.MONTH),-1)

Get first day of XX months from now
Here we added months using -2.
 So on 27 March – 2 months gives me 01 Jan
 Changing to + 2 gets me 01 May

=DateUtils.addMonths(DateUtils.truncate(mint:now, Calendar.MONTH),-2)

Get first day of this month
Today is 27 March this returns 01 Mar

=DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), -1),
Calendar.MONTH), +1)

Find Last Day of this month
First part of this finds the first day of next month. The last
item (-1) subtracts 1 day to get the last day of this mnth.

=DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), -0),
Calendar.MONTH), -1)

Get first day of next month
Today is 27 March this returns 01 APR

=DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), -0),
Calendar.MONTH), +1)

Add 1 month to today’s date
Today is 27 March, this returns 27 April

=(new java.util.Date ((new java.util.Date ()) .getYear(), (new java.util.Date ()) .getMonth () + 1,
(new java.util.Date()) .getDate ()))

Trigger highlighting when a date is within a certain rage.
Here Currency Que Item Due Period End is the Date and +
60 is the days
Place a label under the data you want to highlight. One
label can run across the whole page, no need for a
different label under each text box.

=$F{Currency Queue Item Due Period End} .before (new java.util.Date ((new java.util.Date ())
.getYear(), (new java.util.Date ()) .getMonth (), (new java.util.Date()) .getDate () +60))

=$P{Cutoff Date}. after(DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new
Date(), -2), Calendar.MONTH), -0))

Trigger highlighting on an expired date

Add a label of any color behind the text box you want to highlight. Place a label under the data
you want to highlight. One label can run across the whole page, no need for a different label
under each text box.
Then reference the expiration date property of the RI so that the box prints when the date is
expired:
=$F{Is Expired}==true

Hyperlink to a form
You must query for the Form Name and Object Key. They
renamed the Form Object Key to ‘Form Key’ here.
This only opens forms that you either submitted or where
submitted on you. Checking with Kenny to see how you
allow viewing any form.

Also only works from Web, does not work from the Portal.

<a href='https://fti.mint-online.com/fti/en/workflow/displayform/$F{Form Key}'target='_blank'
rel='noopener noreferrer'>$F{Form Name}

Use a variable instead
Variable only prints in the detail band, but it calculates
anywhere, so it can be used to drive print functions.

You can use the java above to create a variable. Choose no calculation and DATE-TIME as the
variable type and then you can reference the variable in place of the formulas.
Variable Syntax:
=DateUtils.addSeconds(DateUtils.ceiling(DateUtils.addMonths(new Date(), +0),
Calendar.MONTH), -0)

Print When Syntax

=$F{Currency Queue Item Due Period End}. before$V{Variable1_Cutoff Date}
Or another example
=$P{Cutoff Date}. after $V{Variable1_Early Warning}

You need to set the Reset Time to ‘Never’ in order to get the variable to print outside of the
details section. E.g. in the report header. This can be helpful for setting up an expiration date.

Print based on comparisons
In Print When Expression I used something like this. The text is only showing when this
condition is fulfilling.

$V{Dr_total}.intValue()<= $V{Cr_total}.intValue() ? Boolean.TRUE:Boolean.FALSE
Print a value from a list
See the screenshot below. There is a built in system
variable called report count. You access it form the bottom
of the PRINT WHEN dialogue.

Set your query so that it sorts the data you want so that
you get the desired value in the top row.
(Ascending/Descending) Then apply the coding at right so
that only 1 row of data prints.

Apply this to the DETAIL Band Print When (Select Detail from pane at left)
=$V{REPORT_COUNT}==1

Use HTML to Format subset of text in a label Enter HTML in the expression. Here we will enter text ‘clicking URL opens new browser tab” in a

smaller font (4 points less than selected for Label).

• Enter
 to separate the text you want to change:

• Form name
 (*clicking url opens new browser tab)

Using an If-Else Construct in an Expression (($F{name}.length() > 50) ?
(($F{name}.startsWidth(“A”)) ? “AAAA” : “BBB”) : $F{name})

This expression returns the String AAAA when the value of the field name is longer than 50
characters and starts with A, returns BBB if it is longer than 50 characters but does not start
with A, and, finally, returns the original field value if neither of these conditions is true.

Turning Dates into Quarters for Grouping Purposes Set Evaluation as immediate then, In the Expression use the following:
="Q"+((($F{Schedule Event Start}.getMonth()+0)/3)+1)+"-"+new
SimpleDateFormat("yy").format($F{Schedule Event Start})

This generates Q-##-YY as an output

You can move the year to the front of the expression so that it sorts correctly in a cross tab YY-
QQ

Grouping dates by Month/Year Create a group of Month and then Group by the expression below.
=new SimpleDateFormat("MMM.yy").format($F{Schedule Event Start})

Groovy and Java Code Samples

. Content of the Report (bands)

1. Title: This band appears only on the first page of the report.
2. Page header: If you want your title to appear on each page, you can use this instead of the title band.
3. Column header.
4. Group header: This band does not appear by default. You have to add it by right-clicking on “Report” above the bands and selecting “Create Group”.

Groups are used to group your data according to the field you choose. You can add as many as you need. Just mind the order! You might want to move
them further up or down.

5. Details: You can have one or more details band. Here you add the detailed data gathered from your SQL.
6. Group footer: Usually used to sum up amounts.
7. Column footer.
8. Page footer: Usually used to show the page number and date.
9. Summary: Mostly used when you want to add an additional page to your report to put some separate data, like a summary.
10. Background: Mostly used for document watermarks. For example, if a document is not completed and you want to make this apparent to the person

reading it.

 Properties

1. Usually we use text fields to add data in the report (see Palette > Basic elements on the upper right).
2. Select a field from report and take a look at the “Properties” tab on the lower right.
3. There are 6 tabs: Appearance, Borders, Text Field, Inheritance, Hyperlink and Advanced.
4. “Advanced” contains all data from the others so you can make changes directly there.
5. You can change the font type, font size, styles, etc.
6. The field will show an “Expression”. It can be a field name (e.g., $F{field_name}), variable (e.g., $V{var_name}), parameter (e.g., $P{param_name}), or

resource (e.g., $R{res_name}). But it can also contain an expression like $P{x}!=null ? $F{x} : $F{y}. This means if the parameter x is set then the field x
shall be shown. Otherwise, field y shall be shown.

7. Print when expression: Probably the most used. It usually starts with “new Boolean(…)” and is used in case you want to hide a field. If you want to hide
an entire line where all the fields are null, then you also have to select “Remove Line When Blank” and “Blank When NULL”.

8. Pattern: If you have a sum, you probably want your number to appear in a particular way (e.g., for numbers like 1’000.00 you can use #,##0.00).
9. Evaluation time: The default is Now, but there might be cases when you want to evaluate the data per group.
10. Things like size and location, you can change them directly from Design.
11. You can also set properties for the report and for bands. For example, you can use Print when expression for a band if you only want it to appear in

certain cases.

11.

Page sizes in Pixels

Page Type Dimensions in Pixels Page Type Dimensions in Pixels

Letter 612x792 ARCH_E 2592x3456

Note 540x720 ARCH_D 1728x2593

Legal 612x1008 ARCH_C 1296x1728

A0 2380x3368 ARCH_B 864x1296

A1 1684x3368 ARCH_A 648x864

A2 1190x1684 FLSA 612x936

A3 842x1190 FLSE 612x936

A4 595x842 HALFLETTER 396x612

A5 421x595 11X17 792x1224

A6 297x421 LEDGER 1224x792

A7 210x297

A8 148x210

A9 105X148

A10 74X105

B0 2836x4008

B1 2004x2836

B2 1418x2004

B3 1002x1418

B4 709x1002

B5 501x709

	Java Scripts and Report Building Techniques
	Scripting
	Groovy and Java Code Samples
	. Content of the Report (bands)
	Properties
	Page sizes in Pixels

